SMOOTHING TORIC FANO THREEFOLDS

LIANA HEUBERGER

Key words: Fano varieties, Mirror Symmetry, Toric degenerations.

Abstract: Laurent Inversion (LI) is a smoothing construction designed to find mirror pairs in the Fano case. Given a Laurent polynomial f supported on a 3D Fano polytope P, let X_P be the associated toric Fano threefold. The general LI construction then embeds X_P inside an ambient toric variety F. If in addition X_P is a complete intersection defined by line bundles on F, taking a general section gives a variety X which degenerates to X_P. The goal is for X to be as smooth as possible.

The principal motivation for these constructions is the following: there is a conjectured one-to-one correspondence between certain deformation families of Fano varieties and equivalence classes of polytopes. Using this information, one can state a precise version of the mirror theorem for Fano varieties. In the context above, this directly translates to f being the mirror of X.